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A three-dimensional dynamic model of the knee was developed to study the interactions 

between the articulating surfaces of the bones and the geometrical and mechanical properties of 

the ligaments. The contact-surface geometry of the distal femur, proximal tibia, and patella was 

modeled by fitting polynomials to each of  the eight articular surfaces. Twelve elastic elements 

were used to describe the function of the ligamentous and capsular structures of the knee. The 

origin and insertion sites of each model ligament were obtained from cadaveric data reported for 

an average-size knee. The response of the model to both anterior-posterior  drawer and axial 

rotation suggests that the geometrical and mechanical properties of the model ligaments 

approximate the behavior of real ligaments in the intact knee. Comparison of the model 's 

response with experimental data obtained from cadaveric knee extension indicate further that the 

three-dimensional model reproduces the response of  the real knee during movement. 

Key W o r d s :  Knee Model, Knee-Extensor Mechanism, Ligament Model, Dynamics 

1. Introduction 

The knee is one of the most frequently injured 

and surgically repaired joints in the body. Almost 

two million people seek medical care for knee 

injuries annually. 

Most of these injuries are characterized by 

complex multi-directional displacements that can 

not be defined or measured objectively. However, 

surgeon and joint  replacement manufacturers can 

not improve on treatment outcome or longevity of 

prosthetic tolerance until knee joint  injury pat- 

terns are accurately defined for the individual 

patient. The mathematical knee model has been 

developed to understand the mechanics of the 

normal knee and for improving the diagnosis of 

patients with movement disabilities resulting from 

knee injury. Though numerous attempts have 

been made to determine the forces transmitted by 

the human knee, very few models have included 

the combined interactions of  the femur, tibia, and 

patella (Smidt, 1973; Nisell, 1985; Essinger et al., 
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1989; Yapaaguchi and Zajac, 1989; Garg and 

Walker, 1990; O'Connor  et al., 1990; Turner and 

Engin, 1993). It is significant that only two of 

these studies attempted to model the tibiofemoral 

and patellofemoral joints in three dimensions 

(Essinger et al., 1989; Garg and Walker, 1990). In 

each of these models, however, joint  function is 

not represented completely. In the model devel- 

oped by Garg and Walker (1990), the relative 

positions of the femur, tibia, and patella are not 

calculated. Instead, the displacements of the bones 

are input to the model using data obtained from 

cadaveric experiments. Essinger's (1989) model, 

on the other hand, constrains the movements of 

the patella to lie along a prescribed path. 

in this work, a three-dimensional  model of the 

knee is developed which describes the interactions 

between the articulating surfaces of the bones and 

the geometrical and mechanical properties of the 

ligaments spanning the joint. Quantitative com- 

parisons between model and experiment are also 

undertaken to assess the rationale of the mechani- 

cal and geometrical parameters assumed by the 

model. 
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2. Articular Surface  Geometry of 
the Knee 

An accurate description of the geometry of the 

articulating surfaces of the bones is critical for 

accurate calculations of their relative movements. 

Garg and Walker (1990) measured the geometry 

of the articular surfaces and ligament attachment 

sites for 23 normal cadaveric knees. On the basis 

of these data, we modeled the contact-surface 

geometry of the lemur, tibia, and patella by fitting 

polynomials to each of the eight articular surfaces 

(see Fig. 1): the medial and lateral tibial 

plateaux, the medial and lateral femoral condyles, 

the medial and lateral patellar surfaces of the 

femur, and the medial and lateral patellar facets. 

The coefficients of the polynomials were deter- 

mined by using optimization theory to minimize 

errors between the mathematical surfaces and the 

measured data describing the anatomical shapes 

of the bones (Foley and van Dam, 1982). Specifi- 

cally, the medial and lateral femoral condyles 

were each described by fourth-order polynomials 

using cylindrical coordinates. A plane approxi- 

mation was used for both the medial and lateral 

tibial plateaux. The lateral tibial plateau sloped 7 

~ posteriorly and 2 ~ laterally, while the medial 

tibial plateau sloped 2 ~ posteriorly and medially. 

The medial and lateral patellar surfaces of the 

femoral groove were each represented by second 

-order polynomials using cylindrical coordinates. 

The medial and lateral facets of the patella were 

each also approximated as a fiat surface. In the 

model, the surfaces of the patellar facets were 

divided by a vertical ridge and inclined at an 

angle of 130 ~ to one another. 

3. Reference Frames 

The selection of an appropriate and standard- 

ized method for describing three-dimensional 

joint  motion is currently debated by biome- 

chanists interested in providing more direct com- 

parisons between the results obtained from vari- 

ous studies. 

In this work, we adopted the coordinate sys- 

tems given by Kurosawa et al. (1985), Reuben et 

al. (1989), and Garg and Walker (1990). Kuros- 

awa et al. (1985) showed that the shapes of the 

posterior femoral condyles may be closely ap- 

proximated as spheres. The reference frame of the 

model Femur is based on the transverse axis 

passing through the centers of the near-spherical 

femoral condyles. The origin of the femoral refer- 

ence frame is located at the midpoint between the 

centers of the near-spherical medial and lateral 

femoral condyles (Kurosawa, et al. 1985) (see 

Fig. 2). The transverse axis is defined as the x 

Fig. 1 

(a) TibiofemoraI joint (b) PatellofemoraI joint 

Shapes of the articulating surfaces of the femur, tibia, and patella for the model knee. The tibial 
plateaux and the surface of each patellar facet were approximated as fiat surfaces in the model. The 
femoral condyles and the surfaces of the femoral groove were modeled by fitting polynomials to the 
cadaver data reported by Garg and Walker (1990). 
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Fig. 2 Reference coordinate frame of the knee: The reference coordinate system of the tibia was defined to be 
coincident with that of the femur at full extension. The posterior condyles of the femur were shown to 
closely fit spherical surfaces (Kurosawa et al., 1985). The x-axis was defined as the transverse axis 
joining the centers of spherical condyles. The y axis was perpendicular to the x-axis and parallel to the 
long axis of femoral shaft in the sagittal plane. The long axis of the femoral shaft deviated by 5 ~ 15 ~ 
from y-axis in the frontal plane. The zaxis  was determined by vector cross product ofx and y-axes. 
The origin of the patellar coordinate system was defined as the center of the patella. ]-he axes of the 
patellar coordinate system were parallel to those of the femoral reference coordinate frame. 

-axis of the femur, whose positive direction is 

taken to point medially. The y-axis is defined to 

be perpendicular to the transverse axis and paral- 

lel to the long axis of the femoral shaft; the y-axis 

is taken to be positive when pointing toward the 

hip. ]-he z-axis is formed by taking the vector 

cross-product of the x and y axes; its direction is 

positive when pointing anteriorly (see Fig. 2). 

The femoral reference frame is chosen as the 

inertial reference frame because this frame 

remains stationary during f lexion-extension 

movements of the knee. 

The origin of the tibial reference frame is 

defined to be coincident with that of the femoral 

reference frame when the knee is placed in full 

extension and no external forces act on the bones. 

Furthermore, the femoral and tibial reference 

frames are aligned with one another at full exten- 

sion. The orientation of the model tibia relative to 

the model femur is described using Euler angles 

with the following sequence for three successive 

rotations of the tibia: x (f lexion-extension)-z 

(varus valgus ro t a t i on ) -y  ( internal-external  

roiation). The direction of each Euler angle is 

consistent with the right-hand rule. Note that 

since the femur remains fixed while the tibia 

moves, this sequence of joint rotations is identical 

with that defined by the JCS proposed by the ISB 

(Wu and Cavanagh, 1995). 

In the model, translations of the origin of the 

tibial reference frame relative to that of the femor- 

al reference frame are expressed in the tibial 

reference frame. This description of tibial transla- 

tions is consistent with clinical conventions used 

by others. Thus, anterior-posterior translations of 

the tibia relative to the femur are along the z-axis 

of  the tibia; medial-lateral shift is a translation 

along the x-axis of the tibia; and proximal-distal 
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distraction is a translation along the y axis of the 

tibia. 

The origin of the patella reference frame is 

located at the geometric center of the patella (see 

Fig. 2). This point was determined from surface 

measurements (Koh et al., 1992). Thus, at full 

extension of the knee, the origin of the patellar 

reference frame is not coincident with the origin 

of the femoral reference frame. These two refer- 

ence frames are, however, aligned with each other 

when the knee is placed in full extension. The 

orientation of the patella relative to the femur is 

described by Euler angles with the following 

sequence for the three successive rotations: x 

(patellar flexion-extension)-z(patellar rotation) 

y (patellar tilt). 

Translations of the patella are defined by the 

position of the origin of the patellar reference 

frame with respect to the origin of the femoral 

reference frame. In this case, all translations of the 

moving body (patella) are expressed in the refer- 

ence frame of the fixed body (femur). 

4. D y n a m i c  M o d e l l i n g  o f  the  K n e e  

[t is assumed that due to synovial fluid, the 

femoral condyles roll and slide on the tibial 

plateaux without friction. In the model, the femor- 

al condyles do not necessarily remain in contact 

with the tibial plateaux at the medial and lateral 

compartments of the knee. In the real knee, con- 

tact between the femur and tibia causes deforma- 

tion of the bones. In the model, deformation of 

the bones is calculated by modeling the behavior 

of cartilage as a thin elastic layer mounted on a 

rigid foundation which represents the underlying 

subchondral bone. In contrast to rigid-body con- 

tact, where holonomic constraints are derived 

from imposing geometric compatibility and sur- 

face-contact conditions at the joint, the deforma- 

ble-contact model calculates the contact force by 

integrating the assumed contact-pressure distribu- 

tion over the deformed surface area. The resulting 

forces at the medial and lateral compartments of 

the knee are then included in the equations of 

motion in the same way as the concomitant 

ligamentous and muscle forces. No additional 

kinematical constraints are necessary when mod- 

eling deformable contact in this way. As a conse- 

quence, relative movements of the tibia and femur 

in the model are characterized by six degrees of 

freedom. 

4.1 Model for Deformable Contact at the 
Tibiofemoral Joint 

When the femur and tibia first come into con- 

tact with each other, we assume that point contact 

exists between these bodies. Under the action of 

the slightest load, the femur and tibia deform in 

the vicinity of their point of first contact, so that 

they touch each other over an area which is finite 

though small compared with the dimensions of 

the two bodies. We assume further that the con- 

tact areas between the femur and tibia remain 

small in comparison with the dimensions of these 

bodies, even when muscle forces become relative- 

ly large as is the case during maximum, voluntary, 

isometric contractions. This assumption effective- 

ly means that the stresses are highly concentrated 

in the region close to the contact "patch", and are 

not greatly influenced by the shape of the bodies 

at a distance from the contact area. A theory of 

contact mechanics is needed to predict the shape 

of this area of contact, and how it might grow in 

size with increasing tibiofemoral joint  load. 

Furthermore, this theory must allow a calculation 

of the magnitude and distribution of the surface 

pressure that is transmitted across the joint. 

Finally, the theory should enable calculations to 

be made of the total deformation of each body 

resulting from the applied load. 

4.1.1 Location of the contact point 
When the femur and tibia are first brought into 

contact, a single point of contact is assumed to 

exist between these two bodies. Note that we do 

not assume that contact must take place at both 

the medial and lateral sides of the knee; it is 

allowable that contact occurs only at one point in 

the model. At the contact point, a common tan- 

gent plane can be found. This common tangent 

plane ensures that proper contact occurs between 

the surfaces at the point of contact. To find the 

location of the contact point, two conditions, 
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referred to as the contact conditions, must be 

satisfied. First, the tangents and normals to each 

surface at the contact  point  must be parallel." 

t a e  r i b = 0  (1) 

where ta is the tangent vector to body A 

(femur) at the contact  point, and nb is the normal  

vector for body B (tibia) at the contact  point. 

Second, the tangents and normals to each surface 

at the contact  point  must be colinear: 

ta �9 Rab = 0  (2) 

where Rab is the vector leading from the con- 

tact point  on body A (femur) to the contact  point  

on body B (tibia) (see Fig. 3). 

Fig. 3 The contact conditions for the deformable 
contact model at the tibiofemoral joint. 
Points a and b represent the points of first 
contact on bodies A and /~, respectively. The 
vector from point a to point b must be 
directed along the common normal to both 
bodies. The condition of hard contact 
requires coincidence of a and b as an addi- 
tional constraint, t and n are the tangent and 
normal vectors for each surface at the points 
of first contact, point a and point b. Rau is a 
position vector which represents the distance 
between the contact points on the bodies. Ra 
and Rt, are vectors which define the position 
of each contact point relative to a global 
reference frame. 

The  locat ion of  the contact  point  was found by 

solving Eqs. (1) and (2) s imultaneously using a 

roo t - f ind ing  a lgor i thm for nonl inear  equations.  

Note  that only the two contact  condi t ions  are 

used to find the location of  the contact  point  for 

the t ib iofemoral  jo in t  model.  If  the bodies were 

rigid, an addi t ional  constraint  equat ion  is needed 

to prevent interpenetrat ion of  the two surfaces 

(see Sec. 4. 2). Because our  model  for the 

t ib iofemoral  jo in t  assumes that the surfaces 

deform under load, this kind of  condi t ion  is not 

imposed. 

4.1.1 Shape of the contact area 

Begin by letting the point  of  first contact  be the 

origin of  a rectangular coordinate  system in 

which the x -y  plane is the common  tangent plane 

to the two surfaces, and the z-axis  lies a long the 

c o m m o n  normal  directed positively into the lower 

solid (see Fig. 4 ( a ) ) .  The geometry of  the femur 

and t ibia in the region of  the point  of  first contact  

is approximated;  the shape of  each surface in the 

vicinity of  the contact  region is described by a 

second-order  surt:ace po lynomia l  ( Johnson ,  

1985). When each of  these surfaces is projected 

onto the tangent plane at the point  of  contact, the 

projected shape is an ellipse (Johnson,  1985). 

Based upon the theory of  Hertz, when the two 

bodies are then brought  into contact  and loaded,  

the shape of  the resulting contact  area is also an 

ellipse. 

By choosing the or ientat ion of  the x and y axes 

so that the term in xy vanishes, the separat ion 

between the surfaces, z, may be writlen as 

z=Ax2+ By2=.l~x2+-lry2 
Z-pc ape 

(3) 

where A and /3 are posit ive constants, as yet 

unknown,  and Pe and Pe are the principal  relative 

radii of  curvature  whose values are also un- 

known.  Physically, Pe and pe represent the princi- 

pal radii of  curvature  of  the ellipse that results 

when the individual  ellipses for bodies A and B 

are added together. The problem, therefore, is to 

calculate values for the constants A and B, from 

which the principal  relative radii of  curvature,  Pe 

and p~, may then be found. 
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Johnson (1985) has shown that if the axes of 

principal curvature of each surface, the x~ axis 

and the xb axis say, are inclined to each other at 

an angle of ~ (see Fig. 4(b)) ,  then the constants 

A and /3 may be found by solving the following 

two equations simultaneously: 

I [ - 7 1  1 1 1 
/ 3 + A = ~ - t p  §  (4) 

B A 1 

(a) Two Solid elasl bodies 

+2( 1,)cos 2 
\ /ga IOa/\ Pb lOb ] 

(5) 

where Pa, P;, Oo, and p;  are the principal radii of 

curvatures for the contacting surfaces, and ~ is 

the angle between the axes which coincide with 

the principal radii of curvatures, Pa and Pb (see 

Fig. 4 (b)). 

Once Eqs. (4) and (5) have been solved simul- 

taneously for the constants A and B, the principal 

relative radii of curvature of the elliptical contact 

area, pe and pg may be found from 

I 
P e :  2A (6) 

1 
Pe2B (7) 

Finally, if xe denotes the axis which coincides 

with the principal radius of curvature pe, then the 

angles between xe, xa, and xb are given by (see 

Fig. 4 (b)) : 

( l ~ - l ~ s i n 2  ~ 
Pa Pal  

t a n / ~ - (  l ~ - ~ l  ] - (  l \ o ~  P',, \P~ 01~) c ~  

(8) 
a =  ~- - /~  (9) 

where a is the angle between the axes coinciding 

with the principal radii Pe and p~, and /~ is the 

angle between the axes coinciding with the princi- 

pal radii Oe and Pb (Fig. 4(b)) .  

(b) 

Fig. 4 

First quadrant projection of principal curves 

Principal radii of curvatures at the contact 
point. The two bodies are pressed together so 
that the z-axis is the common normal, p and 
p' represent the principal radii of each sur- 
face. X and y represent projections of the 
planes containing the principal radii on the 
tangential plane at the point of contact. The 
principal planes of the two contacting sur- 
faces are inclined to each other at an angle 
~. X~ and Ye are the projections of the 
penetrated surface after contact, a and /~ are 
the angles between the planes of the principal 
radii of the contacting surfaces and those of 
the penetrated surface. 

4.1 .3  C a l c u l a t i o n  o f  t h e  r e s u l t a n t  c o n t a c t  

f o r c e  

The elastic-foundation model is used to calcu- 

late the pressure distributions and resultant con- 

tact forces at the medial and lateral compartments 

of the tibiofemoral joint. This model combines 

the layers of cartilage on the posterior femoral 

condyles and on the tibial plateaux into a single, 

elastic layer of depth h. Furthermore, the model 

assumes that the elastic layer rests on a rigid 

foundation of subchondral bone. The elastic 

foundation approach has been used by others to 

calculate the forces transmitted at the knee 

(Andriacchi et al., 1983; Essinger et al., 1989; 

Blankevoort et al., 1991). 

if the penetration at the origin is denoted by c~, 
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then the total normal elastic displacements of the 

cartilage layer are given by 

u~a+ u ~ + z :  ~ (10) 

where uz~ and uzo represent the normal elastic 

displacements of the cartilage layer on bodies A 

and B, respectively. Thus, Uz,,+ Uz~ represents the 

combined normal elastic displacement of the 

cartilage layer foundation. Substituting Eq. (3) 

into Eq. (10) gives an expression for the total 

normal elastic displacement of the cartilage layer 

at any point (x, y) within the contact area, thus: 

[ \ [ \ X 2  y2 

The penetration at the origin of the coordinate 

system, ~, is the maximum normal displacement 

of the cartilage layer, and is given by (see Fig. 5) 

~ :  ( R ~ -  R~) e n  (12) 

where R~ and Rb are, respectively, the position 

vectors of the contact points on body A and body 

Fig. 5 Elastic foundation model used to calculate 
the pressure distributions and resultant forces 
acting at the medial and lateral sides of the 
tibiofemoral joint. The z-axis is the common 
normal at the point of contact. The contact 
pressure at any point within the contact area 
depends on the displacement uz The profile 
of the pressure distribution is assumed to be 
paraboloidal rather than ellipsoidal as given 
by the Hertzian theory of contact between 
two elastic bodies. The transverse section of 
the deformed elastic layer is assumed to be an 
ellipse. 

B, relative to the origin of the femoral reference 

frame (see Fig. 4), and n is the unit vector 

directed along the common normal of the contact- 

ing surfaces at the contact point. 

Assuming that the pressure at any point (x, y) 

depends only on the displacement at that point (i. 

e., shear between the adjacent elements of the 

layer is neglected), and that it increases with 

increasing normal displacement of the cartilage 

layer, the contact pressure (p) at an), point within 

the contact area can be written as (Blankevoort et 

al., 1991): 

1 Uz 
h 

where K is the equivalent or bulk modulus of 

cartilage, and h is the total thickness of the foun- 

dation layer. 

Under the assumption of uniaxial, confined 

compression (i. e., no lateral expansion of the 

layer occurs so that the radial and tangential 

strains remain zero), it can be shown that Hooke' 

s law leads to the following expression for the 

bulk modulus of the layer, /s (Dowson and 

Taylor, 1967; Dowson and Jin, 1990; Blankevoort 

et al., 1991): 

(1--u)  (14) K =  (1+~)  (1--2~) 

where E and u are the Young's modulus and 

Poisson's ratio of cartilage, respectively. Equation 

(14) is valid only when the normal displacements 

of' the cartilage layer within the contact area 

remain small. 

We modeled cartilage as a single-phase, linear, 

elastic material, and assumed that its properties 

are both homogeneous and isotropic. Approx- 

imating cartilage as a single-phase, elastic mate- 

rial is not justifiable if its long-term response is to 

be modeled. This is because the long-term 

response of this tissue exhibits the nonlinear, 

viscoelastic properties of creep and stress relaxa- 

tion. When cartilage is loaded over a short period 

of time, however, say in the range of I-5 seconds, 

its response is more-or-less elaslic (Hayes and 

Bodine, 1978; Hori and Mockros. 1976; Mak, 
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1986). In the cadaveric knee experiments perfor- 

med in the previous work, quadriceps forces were 

applied for no longer than 5 seconds (Kim, 

1998). Therefore, we took the value of the elastic 

modulus of cartilage to be E = 5  MPa, and the 

value of Poisson's ratio as u=0.45. These values 

are similar to those assumed by Blankevoort et al. 

(1991). 

Finally, the resultant force transmitted at the 

joint is found by integrating the pressure distribu- 

tion acting within the contact area. For the non- 

linear model of cartilage, the resultant contact 

force is given by 

rcab 

h 

a and b are parameters of the ellipse given where 

by 

a =  (23pc) l/z, b =  (2~pe) 1/z (16) 

Note that, in each case, the resultant force is 

assumed to act at the centroid of the elliptical 

contact area. 

4.2 Model  of  the Pate l lo femora l  Joint  

The knee-extensor mechanism, which describes 

the interaction between the quadriceps tendon, 

patellar ligament, and patella, acts to improve the 

leverage of the quadriceps muscles at the knee. 

Several mathematical models of the patellofemor- 

al joint have appeared in the literature (van 

Eijden et al., 1986; Yamaguchi and Zajac, 1989; 

Hirokawa, 1991; Hefzy and Yang, 1993; Heegard 

et al., 1995). The model developed in this study 

is, in many respects, similar to that described by 

Hirokawa (1991). 

We assumed that the patella could be approx- 

imated as a massless body. This assumption is 

reasonable since the mass of the patella is negli- 

gible in comparison with the mass of either the 

thigh or the shank. The surfaces of the patellar 

facet and femoral groove were also assumed to be 

frictionless. Under these assumptions, only four 

forces act to equilibrate the patella at any given 

angle of the knee: the force applied by the qua- 

driceps tendon, the force developed in the patellar 

ligament, and the two contact forces acting at the 
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medial and lateral sides of the patellofemoral 

joint. Note that the force applied to the model 

patella by the quadriceps tendon is the resultant 

force developed by the four separate heads of the 

quadriceps muscles included in the model: rectus 

femoris (RF), vastus medialis (VMED), vastus 

intermedius (VINT),  and vastus lateralis 

(VLAT)) .  

Three holonomic constraints act to restrict the 

motion of the patella relative to the femur and 

tibia in the model. By assuming rigid-body con- 

tact in our model for patellofemoral mechanics, 

point contact exists between the femoral groove 

and patellar facet at both the medial and lateral 

sides of the knee. Equations (1) and (2) are used 

to calculate the location of the contact point at 

each side of the patellofemoral joint. These 

parameters are then used in the equation for 

geometric compatibility to obtain the required 

holonomic constraint. The geometric compatibil- 

ity condition ensures that no interpenetration 

takes place between the surfaces of the femur and 

patella at each contact point. Thus, 

Rab e n z O  (17) 

where n is the common normal at the contact 

point for body A (patella) and body B (femur). 

In addition, the patellar ligament was assumed to 

be inextensible, in which case one point on the 

patella was constrained to lie on a sphere whose 

radius was equal to the length of the patellar 

ligament in the model. Motion of the patella, 

when in contact with the femur, was therefore 

characterized by three degrees of freedom. 

This simplification in the model is not as limit- 

ing as it might first appear to be. in the natural 

knee, cartilage deforms at both the tibiofemoral 

and patellofemoral joints as the bones are pressed 

together by the action of the muscles. One of our 

major interests in developing a mathematical 

model of the knee is to use the model to calculate 

cruciate and collateral ligament forces during 

activity. Knee-ligament forces are affected by the 

degree to which cartilage and the menisci are 

compressed under tibiofemoral load. It is 

assumed, however, that deformation of cartilage 

on the patellar facet and on the medial and lateral 
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patellar surfaces of the femoral condyles will have 

much less of an effect on the forces developed by 

the cruciate and collateral ligaments of the knee. 

For this reason, the mechanical behavior of carti- 

lage was neglected in our model of the patel- 

lofemoral joint. 

4.3 Model of the Ligaments 
Twelve separate bundles were used to model 

the geometrical and mechanical behavior of the 

cruciate ligaments, the collateral ligaments, and 

the posterior capsule of the knee (see Fig. 6(a) 

and (b)).  The anterior cruciate ligament (ACL) 

and the posterior cruciate ligament (PCL) were 

each modeled by two fiber bundles, one to repre- 

sent the most anterior, and the other to represent 

the most posterior portion of the ligament (Girgis 

et al. 1975). The lateral collateral ligament 

(LCL) was modeled using only one bundle. The 

medial collateral ligament (MCL) was separated 

into two layers: a superficial layer represented by 

three bundles, and a deep layer represented by 

two other bundles. The actions of the posterior 

capsule, arcuate ligament, and oblique popliteal 

ligament were combined and represented by a 

medial and a lateral bundle. 

The origin and insertion sites of all the liga- 

ments, except the deep bundles of the MCL and 

the posterior capsule, were obtained from Garg 

and Walker (1990). Attachment site,; of the deep 

MCL and the posterior capsule were based on 

data reported by Blankevoort et al. (~991) and by 

Reicher (1993). The path of each model ligament 

bundle was approximated by a straight line run- 

ning from its origin on the femur to its insertion 

on the tibia. Contact of the ligaments with bone 

and with the other ligaments of the knee was not 

taken into account in the model. 

Each ligament bundle was assumed to be elas- 

tic, and its mechanical behavior was represented 

(a) The geometry of the model ligaments in the 
frontal plane 

Fig. 6 

(b) The geometry of the model ligaments in the 
sagittal plane 

Schematic of the model knee showing the location of the model ligament bundles. Twelve ligament 
bundles were included in the model. Symbols appearing in the diagram are: a AC, anteromedial bundle 
of the ACL; pAC, posterolateral bundle of the ACL; aPC, anteromedial bundle of the PCL; pPC, 
posterolateral bundle of the PCL; aMC, anterior bundle of the superficial fibers of the MCL; iMC, 
intermediate bundle of the superficial fibers of the MC L; pMC, posterior bundle of the superficial fibers 
of the MCL; aCM, anterior bundle of the deep fibers of the MCL; pCM, posterior bundle of the deep 
fibers of the MCL; LCL, lateral collateral ligament; LPC, lateral posterior capsule; MPC, medial 
posterior capsule. 
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by a nonlinear stress-strain curve (Butler et al., 

1986). Specifically, the force in each model liga- 

ment bundle was assumed to be quadratic for low 

strains, and linear for strains beyond a pre- 

specified point corresponding to twice the linear 

strain limit: 

f ks2 

f = k ( e - s ~ )  e>2e~ (18) 
/ = 0  e < 0  

lated from values of the reference strains in full 

extension. Unfortunately, no experimental data 

are available for the reference strains of knee 

ligaments. These parameters, together with the 

values of ligament stiffness, were determined by 

matching the overall stiffness and laxity of the 

model knee with experimental data reported in 

the literature (see below). Table 1 gives the 

values of stiffness and reference strain assumed 

for each ligament bundle in the model. 

Here, f is the tensile force in the model ligament 

bundle, k is its stiffness (i. e., force per unit 

strain),  and e is the strain in the model ligament 

bundle, defined as the ratio of its instantaneous 

increase, L-Lo, to the assumed value of its refer- 

ence length, Lo. The linear strain limit et was set 

to 0.03 for all the ligaments in the model (Butler 

et al., 1986). The viscoelastic properties of the 

ligaments, such as creep and force relaxation, 

were neglected in the model. 

The ligament reference length, Lo, can be calcu- 

Table 1 Values of stiffness and reference strains 

assumed for the model ligaments. 

Stiffness: 
Ligament Referenct 

Ligament force/strain 
Budle strain (r 

(N) 

aAC 1500 0.02 Anterior 
cruciate 
(ACL) 

Posterior 
cruciate 
(PCL) 

Medial 
collateral 
(MCL) 

Lateral 
collateral 
(LCL) 

Posterior 
capsule 
(pCap) 

pAC 

aPC 

pPC 

aMC 

iMC 

1600 

pCM 

2600 

1900 

2500 

3000 

0.02 

-0 .21 

0.02 

0.05 

0.04 

pMC 2500 0.02 

aCM 2000 --0.08 

4500 0.03 

LCL 

LPC 

MPC 

2000 0.02 

1500 0.06 

1500 0.06 

4.4 Quadriceps leg raise simulation of the 
model 

The aim of the quadriceps leg raise simulation 

is to assess the accuracy of the model calculations 

by comparing the response of the model knee with 

measurements obtained from the cadaveric experi- 

ments described in Kim (1998). in these experi- 

ments, the intact knee was extended by a known 

force applied to the quadriceps tendon, with and 

without weights attached to the ankle. All  soft 

tissues surrounding the knee, except the capsular 

structures and quadriceps tendon, were removed 

by dissection. The rate at which the knee was 

extended was controlled by specifying the rate of 

change of length of the cable connecting the 

quadriceps tendon to a stepper-motor (see Fig. 

7). To emulate the conditions of the experiment, 

all muscles, except rectus femoris, were removed 

from the model. The force developed by this 

muscle in the model was assumed to be indepen- 

dent of its length, velocity, and activation level, so 

that it may approximate the action of the wire 

cable used in the experiments. In the model, as in 

the experiments, the rate of knee extension was 

controlled by specifying a trajectory for the rate 

of  change of the quadriceps muscle length in time. 

Specifically, the model simulated a quadriceps leg 

raise which took about 20 seconds to extend the 

knee from 90 ~ of flexion to full extension. 

The dynamical equations governing motion for 

the quadriceps leg raise simulation can be written 

as (see Fig. 8): 

A (q~) qtj + B (qtl,  0~) q~ + G (q~F) 

+ Ml,g (q,y) Flig 
+ Mt1(q,y) Fts + Mpl(qts) F~l + jTFq-O (19) 
L q = f ( t ) ;  quadriceps muscle length (20) 



Three-Dimensional Dynamic Model of the Knee 1051 

Fig. 7 

Fig. 8 

Schematic drawing of the experimental test rig for the quadriceps leg raise task. The femur was mounted 
horizontally and fixed to the frame of the table, while the tibia hung vertically by its weight. The 
flexible wire cable was attached to the quadriceps tendon. The stepper motor controlled the length of 
the flexible wire causing the knee to extend at a prescribed rate. The force in the wire cable (quadriceps 
force) was measured during flexion extension movements of the knee. The motion analysis system 
measured the relative displacements of the femur, tibia, and patella during the leg raise task (adapted 
from Kim, i998). 

where qu ,  c)~i, and //'~ are 6 x 1 vectors specify- 

ing the displacements, velocities, and accelera- 

t ions of the t ibia relative to the femur; Mue(qte) 
is a 6 x n matrix which contains  the moment  arms 

of  the model l igament bundles,  each calculated 

about  the origin of the tibial reference frame; n is 

the number  of l igament bundles included in the 

model ( n = 1 2 ;  see Sec. 4. 3); Mpz(q~f) is a 6 x 2  

matrix conta in ing  the moment  arms of the contact 

forces acting at the medial and lateral sides of the 

t ibiofemoral joint ,  each calculated about  the 

origin of the tibial reference frame; Mol(q t i )  is a 

6 x  1 matrix conta in ing  the moment  arm of the 

patellar l igament force calculated about  the origin 

of  the tibial reference frame; Fts are the 

t ibiofemoral  forces which act normal  to the 

contact ing surfaces on the medial and lateral sides 

of  the joint;  Flig are the l igament forces acting on 

the tibia; A(q~1) is the 6 x 6  system mass matrix; 
Free-body diagram of the tibia. F u  are the G (qti)  is a 6 x 1 vector conta in ing  only gravita- 
forces acting at the medial and lateral sides of t ional  terms; and /3(qt l ,  q~i) is a 6 x I  vector 
the tibiofemoral joint; F~g are the forces due describing both Coriolis and centrifugal effects; ] 
to the ligamentous and capsular structures of 
the knee; Fp~ is the force in the patellar (q) is a 6 x l  matrix, called the constraint  
ligament; mg is the weight of the tibia. Jacobian of the kinematical  constraint  given by 

Eq. (20). Specifically, ]rFq represents the con- 
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Fig. 9 Block diagram showing interactions among the major compartments of the ligamentous skeletal model 
with knee motion constraints. 

straint forces and torques that must be applied to 

the model tibia in order to control the length of 

the quadriceps muscle. 

Equations (19) and (20) were generated sym- 

bolically using a commercial software package 

called SD/Fast  (Symbolic Dynamics Inc.). They 

represent a set of 6 nonlinear, differential equa- 

tions which must be numerically integrated using 

a variable-step, Runge-Kutta-Feldberg 5-6 inte- 

grator, given an appropriate set of initial condi- 

tions and applied forces. Because integrating 

equations of motion for constrained dynamical 

systems usually introduces error during the inte- 

gration procedure, we used Baumgarte's method 

within SD/Fast  to stabilize and reduce the inte- 

gration errors. Figure 9 shows the interactions 

between the major components of the model for 

the quadriceps leg raise simulation. 

5. St i f fness  and Laxity of  the Model 
Knee 

In this section, we assess the rationale of the 

ligament properties assumed by the model, specifi- 

cally the origin and insertion sites and the values 

of stiffness and reference strain for each ligament 

bundle in the model. Although the stiffnesses and 

origin and insertion sites of the cruciate and 

collateral ligaments of the knee are available in 

the literature, values of ligament reference strains 

cannot be obtained from measurements performed 

on cadaveric knees. Our approach for assessing 

the rationale of the model ligament parameters is 

to compare the anterior-posterior stiffness and 

torsional stiffness of the model knee with data 

obtained from cadaveric experiments reported in 

the literature (e. g., Markolfet  al., 1976). 

5.1 Anterior-posterior stiffness 
The response of the model to anterior-posterior 

drawer compares favorably with experimental 

data reported by Markolf et al. (1976, 1981), 

Butler et al. (1980), Piziali et al. (1980) and 

Fukubayashi et al. (1982) for knee flexion angles 

of 0 ~ 20 ~ 30 ~ and 90 ~ (Fig. 10). The response of 

the model was compared with the experimental 

data at these particular angles of flexion because 

the real knee is known to be much stiffer at the 

extreme angles of flexion (i. e., full extension and 

90 ~ of flexion) than at either 20 ~ or 30 ~ of flexion. 

In fact, it is for this reason that the Lachman Test 

is used rather than the Drawer Test when the joint 

is tested for partial or complete rupture of the 
ACL. 

Consistent with the experiments, the stiffness of 

the model knee is lower at moderate values of 

flexion (20 ~ and 30 ~ of flexion) than at the 

extremes (full extension and 90 ~ of flexion) (Fig. 
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(a) Knee flexion 0 ~ : Markolfet al. (1981) (dotted 
line), Piziali et al. (1980) (light solid line), 
Shoemaker et al. (1985) (dashed line) 

(b) Knee flexion 20 ~ : Markolfet al. (199t) (dotted 
line), Shoemaker et al. (1985) (dashed line) 

(c) Knee flexion 30 ~ : Fukubayashi et al. (1982) 
(dashed line) 

Fig. 10 

(d) Knee flexion 90 ~ : Butler et al. (1980) (dashed 
line), Markolf et al. (1976) (dotted line) 

Anterior-posterior force-displacement curves at 0, 20, 30, and 90 ~ of knee flexion. Anterior-poste- 
rior force for the model (heavy solid line) was calculated for values of anterior-posterior drawer 
ranging from 5 to 5 mm. At each knee angle, a neutral value of anterior-posterior translation of the 
tibia relative to the femur was first found. This was the tibiofemoral translation at which all of the 
ligament forces were completely balanced. The tibia was then translated a given amount either 
anteriorly (positive translation) or posteriorly (negative translation) and the corresponding A P 
force calculated. In the model, and as assumed in the experimental studies, this A-P force was due 
entirely to the ligaments and capsular structures. 

10, compare  heavy solid line with light solid, 

dashed, and dotted lines). This is because at 20 ~ 

and 30 ~ of  flexion, there is a small region around 

the neutral posit ion at which all of  the l igament 

forces remain small (Fig. 10(b) and (c)) .  That  is, 

the knee is relatively lax at these angles of  flexion. 

At small and large angles of  flexion, however,  

both the model  and the experiments show that the 

A C L  and PCL bear load for nearly all values of  

drawer (Fig. 10(a) and (d)) .  Thus, the knee 

becomes relatively sti f f  at the extreme angles of  

flexion. 

5.2 Internal-external (torsional) stiffness 
The model  and the experiments show that the 

knee is most stable at full extension since tor- 

sional laxity is min imum in this configurat ion,  

whereas at more flexed positions it is less stable 

because torsional laxity increases substantially 

(Markol f  et al. 1976 and Blankevoort  et al. 1988). 

In the real knee, torsional  laxity increases rapidly 

from full extension to about  20 ~ or 130 o of  flexion, 

after which it remains relatively constant  (Fig. 11, 

compare  dotted lines at 0 ~ 20 ~ 130 ~ and 90 ~ of  

f lexion).  This  behavior  is generally reproduced 

by the model,  a l though torsional  laxity in the 

model  continues to increase as knee flexion angle 

increases, whereas laxity in the real knee remains 

relatively constant  at all angles greater than about  

45 ~ of  flexion (Fig. 1 l, compare  heavy solid line 

with light solid and dotted lines from 45 ~ to 90 ~ of  

f lexion) .  Furthermore,  for both internal and 
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external rotation, torsional laxity is noticeably 

greater in the model than in the real knee at large 

angles of flexion. The unstable torsional laxity at 

large angles of knee flexion can be explained by 

the effects of ligaments which are not included the 

model (Kim, 1996). The only structure prevent- 

ing translation and rotation of the tibia on the 

lateral side of the model knee is the LCL. Absent 

from the model, therefore, are the anterolateral 

structures, consisting of the iliotibial band and 

midlateral capsule, and the posterolateral struc- 

tures consisting of the popliteus tendon and the 

posterolateral capsule. Each of these structures, 

together with the LCL, A C E  and PCL, provides 

substantial restraint to external and internal rota- 

tion of the tibia. 

6. Comparison of Model and 
Experiment for uadrieeps Leg Raise 

Quantitative comparisons between the response 

of the model and experimental data can be used to 

verify the accuracy of the model calculations. 

More often than not, however, they reveal the 

deficiencies of the model. In this section, the 

response of the model is compared with data 

obtained from the quadriceps leg raise experi- 

ments described in Kim (1998). Model calcula- 

tions for the applied quadriceps force and for the 

associated displacements of the tibia and patella 

relative to the femur are quantitatively compared 

against measurements obtained from three intact, 

cadaveric knees. 

Fig. 11 Total rotational laxity calculated for the 
model (heavy solid line) for applied tor- 
ques of +3 Nm plotted against knee flex- 
ion. At each knee angle, a neutral value of 
anterior-posterior translation of the tibia 
relative to the femur was first found. This 
was the tibiofemoral translation at which 
all of the ligament forces were completely 
balanced. Torques of +3 Nm were then 
applied to the tibia either internally (posi- 
tive rotation) or externally (negative rota- 
tion) and the corresponding rotation calcu- 
lated. The total laxity of the model is the 
total amount of tibial rotation between the 
limits of internal-external rotation. Experi- 
mental data (light solid, dotted, dashed 
lines) were obtained from the following 
studies: Markolf et al. (1976) (dotted line), 
Blankevoort et al. (1988) (light solid line), 
Nielsen et al. (1984) (dashed line). 

6.1 Applied quadriceps force 
When comparing model and experiment, it is 

critical that the loading conditions and con- 

straints be the same in both. To show this, we 

have plotted the quadriceps force required to 

extend the lower leg in the model and in the 

experiments for each of the three specimen knees 

(Fig. 12). Consistent with the experiments, qua- 

driceps force in the model remains relatively 

constant in the range 20 ~ ~ of knee flexion. 

As noted in Kim (1998), this results from the fact 

that the ratio of moment arms of the patellar 

ligament force and leg weight, each calculated 

about the tibiofemoral contact point, varies little 

in this region. As the knee approaches 90 ~ of 

flexion, quadriceps force decreases to zero as the 

cosine of the knee angle approaches zero. 

At all angles of flexion, except near full exten- 

sion of the knee, quadriceps force in the model, 

normalized to body weight, is in close agreement 

with that measured for two of the specimens 

tested (Figs. 12, compare heavy solid line with 

dashed and dotted lines). Interestingly, these 

results differ quite noticeably from that obtained 

for the third specimen tested (Figs. 12, compare 

heavy solid and light solid lines). Differences 

between the applied quadriceps force for the 

specimens tested in this study are presumably due 

to anatomical differences between the specimens. 
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Fig. 12 Comparison of quadriceps force needed to 
extend the model knee (heavy solid line) 
and the intact cadaveric knees during the 
leg raise task. In the model, and in the 
cadavers, the lower leg comprised the shank 
and the foot. Experimental data are shown 
for the three specimens tested in this study: 
specimen I (solid line), specimen 2 (da- 
shed line), and specimen 3 (dotted line). 
Quadriceps force in the model is generally 
lower than that needed to extend the 
cadaveric knees, particularly near full 
extension. 

The most significant difference between the 

quadriceps force calculated in the model and that 

applied to the cadavers occurs near full extension 

of the knee. For each of the specimens tested, the 

quadriceps force required to extend the knee 

increases rapidly near full extension (light solid, 

dashed, and dotted lines in Figs. 12). For the 

model, however, relatively little additional force 

is needed in the quadriceps to bring the knee to 

full extension. There are two likely explanations 

for this result. First, our model may not accurate- 

ly reproduce the behavior of the posterior cap- 

sule, which begins to tighten near full extension of 

the knee (O'Connor et al., 1990). Second, our 

model does not account for contact of the ACL 

with the roof of the intercondylar notch (Nor- 

wood and Cross, 1977). This effect presumably 

causes the ACL to tighten near full extension, 

thereby requiring higher quadriceps torces to 

extend the knee in this region of flexion. 

6.2 Relative displacements of the knee 
There is a limited level of agreement between 

the response of the model and the cadaveric 

measurements of tibial displacements for the leg 

raise task (Fig. 14, compare heavy solid line with 

light solid, dashed, and dotted lines). The model 

and the cadavers exhibit internal rotation and 

anterior translation of the tibia relative to the 

femur as the knee is flexed fiom full extension to 

90 ~' (Fig. 13(a) and (e)). Consistent with the 

motion of the real knees, the model tibia rotates 

internally by as much as 20 ~ when the knee is 

brought to full flexion (Fig. 13(a), heavy solid 

line). Most of this rotation, however, is confined 

to the final 30 ~ of knee flexion. In contrast, a 

large portion of internal tibial rotation measured 

in at least two of the specimens occurs during the 

first 30 ~ of knee flexion (light solid, dashed, 

and dotted lines in Fig. 13 (a)). 

The above represents an important difference 

between the model and the experiments for it 

suggests that the model is not able to reproduce 

the screw-home mechanisrn during the final 30 ~ 

of knee extension. Notice, however, that one of 

the specimens tested in this study also does not 

display the characteristic screw-home mechanism 

(Fig. 13(a), compare dotted lines from 0~ ~ 

of flexion). Differences between model and exper- 

iment in this respect, and for that matter between 

the specimens themselves, may be due either to 

differences in the geometry of the bones or to 

differences in the line of action of' the patellar 

ligament force relative to the long axis of the 

tibia. 

In general, and consistent with the experimental 

measurements, the model tibia translates anterior- 

@ as the knee flexes from full extension to 90 ~ 

(Fig. 13(e), compare heavy solid line with light 

solid, dashed, and dotted lines). Peak anterior 

translation of the tibial origin in the model is 

around 7 mm, which is close to that measured in 

two of the specimen knees. Notice, however, that 

the model tibia also translates a small amount 

posteriorly as the knee flexes from 30 ~ to 60 ~ 

(Fig. 13(e), heavy solid line). Only one of the 

cadavers exhibited this behavior near full exten- 

sion of the knee. 

The model calculations show that the tibia tilts 

first medially (varus rotations) and then laterally 
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(a) Internal external rotation of the tibia: internal rota- 
tion (positive); external rotation (negative) 

(d) proximal-distal translations of the tibia: distal trans- 
lation (positive); proximal translation (negative) 

(b) Varus-valgus rotation of the tibia: varus of the tibia 
(positive); valgus of the tibia (negative) 

(e) Anterior-posterior translations of the tibia: anterior 
translation (positive); posterior translation (nega- 
tive) 

(c) Medial-lateral translations of the tibia: medial 
translation (positive); lateral translation (negative) 

Fig. 13 Comparison of the movements of the tibia relative to the femur in the model (heavy solid lines), and 
in the intact cadaveric knees, for the quadriceps leg raise. The displacements of the tibia in the model 
and in the cadavers were measured relative to the position and orientation of the bone when the knee 
was placed in full extension (i.e., the reference configuration of the leg). Shown are the measured 
rotations and translations of the tibia relative to the femur for the three specimens tested in Kim 
(1997): specimen 1 (solid line), specimen 2 (dashed line), and specimen 3 (dotted line). 

(valgus rotations) dur ing flexion of  the knee 

(Fig. 13(b),  heavy solid line).  Al though the 

measurements of  varus-valgus  rotations of  the 

tibia in the cadavers are variable, these angles 

generally lie below 5 ~ . The behavior  of  the model  

is consistent with the measurements in this 

respect. 

The  measurements also show that the tibial 

origin translates medial ly  and proximally for the 

entire range of  knee flexion (dotted lines in Fig. 

13 (c) and (d)) In contrast, the model  t ibia trans- 

lates proximal ly  and laterally as the knee flexes to 

90 ~ (Figs. 13(c) and (d), compare  heavy solid 

line with light solid, dashed, and dotted lines). 
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Fig. 14 Comparison of the patellar flexion relative 
to the femur in the model (heavy solid 
lines), and in the intact cadaveric knees, for 
the quadriceps leg raise. The displacements 
of the patella in the model and in the 
cadavers were measured relative to the 
position and orientation of the bone when 
the knee was placed in full extension (i. e., 
the reference configuration of the leg). 
Shown are the measured rotations and 
translations of the patella relative to the 
femur for the three specimens tested in Kim 
(1998). 

However, peak values of  these tibial displace- 

ments in the model and in the cadavers are small 

(less than 5 mm). 

There is general agreement between the model 

calculations and measurements of the three 

-dimensional tracking patterns of the patella for 

the leg raise task (Fig. 14, compare heavy solid 

line with light solid, dashed, and dotted lines). 

The model and the experimental data show that 

patella flexion lags knee flexion throughout the 

joint range of motion (Fig. 14, compare heavy 

solid line with light solid, dashed, and dotted 

lines). Consistent with experiment, peak values of 

patellar flexion in the model are around 65 ~ 

6.3 M o m e n t  arm o f  the k n e e - e x t e n s o r  

m e c h a n i s m  

The knee-extensor moment arm calculated for 

the model lies in the vicinity of  those measured 

for the cadavers (Fig. 15, compare heavy solid 

line with light solid, dashed, and dotted lines). 

Consistent with the measurements, the moment 

arm calculated for the model has a characteristic 

bell shape when plotted against knee flexion. The 

knee-extensor moment arm increases as the knee 

flexes from full extension, peaks at about 35 ~ of 

Fig. 15 Comparison of the knee-extensor moment 
arm for the model (heavy solid line) and 
those for the cadaveric knees tested in Kim 
(1998): specimen I (solid line), specimen 2 
(dashed line), and specimen 3 (dotted 
line). The knee-extensor moment arm for 
the model lies within the range calculated 
for the cadavers at all angles of knee flex- 
ion, except near full extension. 

flexion, and then decreases rather quickly to a 

minimum value at 90 ~ of flexion (heavy solid line 

in Fig. 15). In two of the specimens tested, the 

knee-extensor moment arms peak at around 40 ~ 

of flexion, which are close to the value calculated 

for the model (compare heavy solid line with 

light solid and dotted lines). For one of the 

specimens, however, the moment arm peaks at 60 ~ 

of flexion (dashed line in Fig. 15). 

Peak values measured for the knee-extensor 

moment arms of the cadavers range from 38 cm to 

60 cm, with two specimens having similar varia- 

tions in the shapes and magnitudes of their 

moment arms. By comparison, the peak value of 

moment arm in the model is around 50 mm, some 

8 10 mm lower than those for the two larger 

specimens. 

it is significant that the moment arm calculated 

for the model is much higher than those estimated 

for all the cadavers near full extension of  the knee 

(Fig. 15, compare heavy solid line with light 

solid, dashed, and dotted lines at 0"). This differ- 

ence between model and experiment is likely due 

to differences in the loading applied to the model 

and the cadavers near full extension of the knee. 

Near full extension, quadriceps forces applied to 

extend the cadaveric knees are much greater than 
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that needed to extend the model knee. Conse- 

quently, the perpendicular distance between the 

screw axis and the line of action of the patellar 

ligament force in the model remains greater than 

that in the cadavers (Fig. 15, heavy solid line near 

full extension). An increase in the applied qua- 

driceps force increases the anterior translation of 

the tibia relative to the femur, which causes the 

distance between the screw axis and the line of 

action of the patellar ligament force to decrease. 

Finally, since the loading conditions and con- 

straints applied to the model and the cadavers are 

similar for most of the range of joint motion, 

differences between the knee extensor moment 

arm calculated for model and those estimated for 

the cadavers must be due to differences in the 

geometry of the bones. The fact that the moment 

arms measured for the three specimens differed by 

as much as 22 ram, suggests that there is consider- 

able variability in the anatomical dimensions of 

the specimens alone (Kim, 1998). It is therefore 

not surprising that a similar level of difference 

exists between the model and one of the speci- 

mens tested, since the model assumes an average 

shape for each of the bones at the knee. 

7. Comparison of Model and 
Experimental Literature data 

In the experiments described in Kim (1998), 

measurements were made of the applied qua- 

driceps force and the resulting displacements of 

the bones for three intact knees. Quantitative 

comparisons between the response of the model 

and the behavior of a real knee could only be 

made on the basis of these data (Figs. 12 15). 

Unfortunately, measurements of knee-ligament 

and joint-reaction forces could not be obtained 

from the experiments, so that these quantities 

could not be compared for the model, and the 

cadavers. However, data for ligament and joint 

-reaction forces at the knee are available in the 

literature, though the loading conditions and 

constraints are different in the various experi- 

ments conducted by others. It is useful, nonethe- 

less, to compare, at least qualitatively, the model 

calculations with these experimental data. A static 

quadriceps leg raise was simulated using the 

model. At each angle of knee flexion, a value of 

quadriceps force was found so that the lower leg 

remained in static equilibrium. Wherever pos- 

sible, the resulting ligament and joint-contact 

forces were then compared with experimental 

data found in the literature. 

7.1 Patellar-ligament and patellofemoral- 
contact forces 

A number of studies have measured the ratio of 

force in the patellar ligament to the applied force 

in the quadriceps tendon (Ellis et al, 1980; Buffet 

al., 1988; Ahmed et al., 1987). In general, the 

value of this ratio remains near unity from full 

extension to 30 ~ of flexion, after which it 

decreases monotonically with increasing knee 

flexion (Fig. 16). Consistent with the experimen- 

tal measurements, the model shows that the ratio 

of patellar ligament force to quadriceps force 

begins above unity at full extension, increases 

slightly as the knee flexes to about 20 ~ and then 

steadily decreases as knee flexion increases (Fig. 

16, compare heavy solid line with solid, dotted, 

dashed, and dot-dashed lines). 

There is also agreement between the model and 

experimental measurements for the ratio of patel- 

lofemoral contact force to applied quadriceps 

force (Fig. 17). Both the model and the experi- 

ments show that the ratio of these forces increase 

from a value of around 0.5 at full extension to 

slightly higher than 1.0 at 90 ~ of flexion (compare 

solid line with dotted line and data points in Fig. 

17). The ratio of patellofemoral contact force to 

quadriceps force is low near full extension 

because patellofemoral forces are small in this 

region, irrespective of the magnitude of the 

applied quadriceps force. Patellofemoral forces 

are small near full extension because the angle 

between the patellar ligament and the long axis of 

the patella remains small. As knee flexion 

increases, however, patellofemoral forces increase 

because the angle between the patellar ligament 

and the long axis of the patella increases. Conse- 

quently, the ratio of patellofemoral force to qua- 

driceps force increases. 
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Fig. 16 Ratio of the force developed in the patellar 
ligament (Fro) to that applied by the qua- 
driceps (F,~) in the model (heavy solid 
line). The ratio of patellar ligament force 
to quadriceps force for the model was 
found by simulating a static quadriceps leg 
raise task. Experimental data were obtained 
from the following studies reported in the 
literature: Buff et al. (1988) (light solid 
line); Ahmed et al. (1987) (dashed line); 
Ellis et al. (1980) (dot-dashed line). The 
dotted line is the results calculated by van 
Eijden et al. (1986). 

7.2 Ligament forces 
The model  A C L  is loaded near full extension 

dur ing a quadriceps leg raise; the model  PCL 

remains slack (Fig. 18, aAC,  pAC,  aPC, and 

pPC) .  This is consistent with experimental  data 

provided by Marko l f e t  al. (1990), who measured 

forces in the whole A C L  during slow extension of  

the intact knee (Fig. 18, add aAC and p A C  and 

compare  with filled d iamonds) .  Tota l  A C L  force 

near extension is higher in the model  than in the 

cadavers because a constant 200 N pull was 

appl ied to the quadriceps tendon in the experi- 

ments, whereas 280 N of  quadriceps force is 

required to equi l ibrate  the model leg at full exten- 

sion. In contrast to the behavior  of  the ACL,  the 

model  PCL begins to bear load orily at 55 ~ of  

flexion, and the force in this l igament increases 

with increasing knee flexion (Fig. 18, aPC and 

pPC) .  There is at least qualitati 'ce agreement 

between these results and the measurements  repor- 

ted by Wascher et al. (1993) (c. f. aPC and pPC 

with filled circles in Fig. 18). Notice, however,  

Fig. 17 Ratio of the restlltant contact force at the 
patellofemoral joint (/"m-) to the applied 
quadriceps force (F,~) in the model (heavy 
solid line). The ratio of patellofemoral 
contact force to quadriceps force for the 
model was found by simulating a static 
quadriceps leg raise task. The dotted line is 
the result calculated by van Eijden et al. 
(1986) using a two dimensional model of 
the patellofemoral joint. Data points corre- 
spond to measurements reported by Ahmed 
el al. (1987) ( 0 ) .  

Fig. 18 Cruciate and collateral ligament forces 
calculated for the model (aAC, heavy solid 
line; pAC, heavy dashed line; aPC, light 
solid line; pPC, light dashed line); aMC, 
dot dashed line). Resultant forces in the 
model ACL and model PCL are higher at 
full extension and at 90 ~ of  f lexion,  
respectively. Experimental data for the 
resultant forces in the ACL (O) and PCL 
( 0 )  were obtained from Markolf et al. 
(1990) and Wascher et al. (1993), respec- 
tively. Forces induced in the various bun- 
dles of MCL, LCL, and capsule were all 
much smaller than those shown for the 
cruciate ligaments. 
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that the model PCL is more heavily loaded than 

the real ligament at 90 ~ of flexion (Fig. 18, light 

solid line at 90~ 

The force borne by the model MCL increases 

as knee flexion angle increases (Fig. 18, aMC). 

Only the model aMC bears force during the 

quadriceps leg raise task; the force in each of the 

remaining bundles of the model MCL remain 

zero throughout the range of knee flexion. The 

forces borne by the LCL and each of the separate 

bundles of the posterior capsule in the model are 

also zero for the duration of the leg raise task. 

These results suggest that only the model aMC is 

recruited as the knee rotates internally during 

flexion. 

7.3 Shear forces at the knee during a 
quadrieeps leg raise 

During static quadriceps leg raise, the tibia was 

statically equilibrated in the anterior and poste- 

rior direction by shear forces of twelve ligaments 

and the resultant shear force from the tibiofemotal 

contact, patellar ligament, and leg weight. Figure 

19 shows the shear components of forces applied 

to the tibia. The shear force of the tibiofemoral 

contact, which is applied anteriorly to the tibia, 

increases as the knee extends because the force of 

the patellar ligament increases. The shear force of 

the patellar ligament also increases because both 

the orientation of this ligament relative to the 

long axis of the tibia and the magnitude of the 

patellar ligament force which results from an 

increase in quadriceps force increase. The model 

ACL is posteriorly loaded for all flexions except 

the range of 60 ~ to 80 ~ the MCL is also pos- 

teriorly loaded from 10 ~ to 90+; the PCL is anter- 

iorly loaded beyond 80 ~ of flexion: 

The overall pattern of cruciate ligament load- 

ing is explained by the variation in the resultant 

shear force applied to the tibia (Fig. 19). The 

model ACL is loaded from 60 ~ to full extension 

because the resultant shear force is directed anter- 

iorly; the PCL is loaded beyond 80 ~ of flexion as 

the total shear force, the ACL, and the MCL then 

acts posteriorly (Fig. 19, compare ACL and PCL 

with Total). The resultant shear force applied to 

the tibia is dominated by the action of the patellar 

Fig. 19 

ligament 

Anterior-posterior shear forces applied to 
the model tibia for the quadriceps leg raise 
task. Patellar ligament shear force, PL 
(dotted line); tibiofemoral contact shear 
force, TF (heavy solid line); shear force 
due to the leg weight, W (heavy dashed 
line); resultant shear force due to the ante- 
rior cruciate ligament, ACL (light solid 
line) ; resultant shear force due to the poste- 
rior cruciate ligament, PCL (light dashed 
line), resultant shear force due to the ante- 
rior bundle of the MCL, aMC (dot dashed 
line). The PL, TF, and PCL are apply 
anteriorly-directed shear forces to the tibia; 
The ACE, MCL and leg weight all apply 
posteriorly-directed shear forces to the 
tibia. Adding all the curves shown in the 
graph together will give zero, indicating 
that the tibia is in static equilibrium in the 
anterior-posterior direction. 

(Figs. 18 and 19, PL). 

8. Limitations of  the Model 

We have introduced a number of simplifica- 

tions into the kinematical structure of our model 

for the knee-extensor mechanism. Perhaps most 

significantly, we approximated the tibial plateau 

and patellar facet as flat surfaces. In view of the 

shapes of parasagittal sections taken through the 

tibia and patella, these approximations appear to 

be reasonable, at least in the range 0+-90 + of 

flexion. As the knee flexes beyond 90 deg, how- 

ever, the validity of our model is brought into 

question, as the patel[ar facet no longer contacts 

the femur in the region of the femoral groove. 

Instead, patellofemoral contact resides on por- 

tions of the medial and lateral femoral condyles 
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Fig. 20 Interaction between tibiofemoral ligaments 
and a patellar ligament: PL (dotted line) is 
the shear force supplied by the palellar 
ligament. Total (heavy solid line) repre- 
sents the resultant shear force applied to the 
tibia by the tibiofemoral contact (TF), the 
patellar ligament (PL), and the leg weight 
(W). The resultant force of the anterior 
cruciate ligament for the static quadriceps 
leg raise is represented as ACL (light solid 
line) and the resultant force of the posterior 
cruciate ligament as PCL (dashed line). 
The difference between Total and PL repre- 
sents the contributions from the tibiofemor- 
al contact force and the leg weight applied 
to the tibia. Notice that the total force in 
the model ACL (light solid line) is higher 
than the resultant anterior drawer (Total, 
heavy solid line). This is consistent with 
experimental data which show that the load 
on the whole ACL can exceed the magni- 
tude of the applied anterior drawer by as 
much as 30 percent (Markolf et al., 1990). 
At small angles of the knee, each bundle of 
the model ACL is inclined at an angle of 
about 25 ~ to the long axis of the tibia. 
Total ACL (orce therefore exceeds the 
applied anterior drawer by a function of 
the cosine of this angle. 

(Ahmed et al., 1983). Since our model fails to 

account for these effects, its applicability is lim- 

ited to the range 0~ ~ of flexion. 
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